PEETIC PLAN DE TEST

2025

TABLE DES MATIÈRES

1.	Introd	uction	5
	1.1.	Objectif du document	5
	1.2.	Méthodologie	
	1.3.	Alignement stratégique	
2.	Tests	prioritaires Q1 2026	
		Vue d'ensemble	
3.		tunité 1 : Gérer santé préventive	
	3.1.	Test 1.1.C: Visualisation carnet de santé	
	3.2.	Test 1.2.B: Timing notification rappels	
	3.3.	Test 1.2.C : Personnalisation rappels	
	3.4.	Test 1.2.D : Wizard configuration rappels	
	3.5.	Test 1.3.A : Pilote clinique vétérinaire	
	3.6.	Test 1.3.C : Retention sync vs non-sync	
4.	Oppor	tunité 2 : Urgence vétérinaire	
		Test 2.1.B: Placement bouton urgence	
	4.2.	Test 2.1.C : Appel direct one-tap	
	4.3.	Test 2.2.B : Format PDF préfère	
	4.4.	Test 2.2.C : Performance génération PDF	
5.	Oppor	tunité 3 : Réduire charge mentale	
		Test 3.1.A : Wireframe dashboard actions	
	5.2.	Test 3.1.B : Priorisation actions dashboard	
	5.3.	Test 3.3.A: Wizard onboarding auto	
6.		drier expérimental Q1 2026	
	6.1.	Janvier 2026	
	6.2.	Fevrier 2026	
	6.3.	Mars 2026	
7.		on des apprentissages	
		Template documentation test	
	7.2.	Partage des learnings	
8.		pes d'expérimentation	
		Velocity vs Learning	
	8.2.	Rigueur scientifique	
	8.3.	Kill criteria systématiques	
	8.4.	Collaboration cross-fonctionnelle .	
9.	Metric	ques de succès plan de tests	
	9.1.	Niveau tests individuels	27
	9.2.	Niveau opportunites	
	9.3.	Niveau North Star Metric	
10.	Risque	es et mitigations	
		Risques experimentaux	
		Risques operationnels	
		Risques business	
11.		usion	
		Synthese du plan	
		Prochaines étapes immédiates	
		Engagement équipe	
12		(es	
		Annexe A : Template fiche test	
		·	30

	12.3. Annexe C : Checklist cloture test	. 30
13.	Références	. 32

Contact

PABLO PERNOT pablo@projetwinston.fr 06 32 43 78 03

Licence

CC BY-SA 4.0 https://creativecommons.org/licenses/by-nd/4.0/

1. INTRODUCTION

1.1. OBJECTIF DU DOCUMENT

Ce plan de tests présente la stratégie d'expérimentation pour valider les hypothèses du framework Thoughtful Execution appliqué à Peetic. Il détaille les tests prioritaires du Q1 2026, leurs protocoles, métriques et critères de succès.

1.2. MÉTHODOLOGIE

Nous utilisons une approche Lean Startup avec :

- Tests progressifs du plus simple au plus complexe
- Critères de succès définis avant chaque test
- Kill criteria clairs pour éviter l'effet sunk cost
- Documentation systématique des apprentissages

1.3. ALIGNEMENT STRATÉGIQUE

Ce plan de tests s'aligne avec :

- La métrique North Star : Rappels honorés par semaine
- La stratégie Rumelt Phase 1 : Ancrage utilitaire
- Les OKRs Q1 2026 : Créer habitude quotidienne

2. TESTS PRIORITAIRES Q1 2026

2.1. VUE D'ENSEMBLE

Test	Hypothèse testée	Туре	Durée	Statut
T1.1.C	Timeline visuelle vs liste	A/B	2 sem	A LANCER
T1.2.B	Timing notification optimal	A/B	3 sem	EN COURS
T1.2.C	Personnalisation rappels	A/B	2 sem	A LANCER
T1.2.D	Wizard vs config manuelle	A/B	2 sem	A LANCER
T1.3.A	Pilote clinique vétérinaire	Bêta	4 sem	EN COURS
T1.3.C	Retention sync vs non- sync	Cohorte	90j	A LANCER
T2.1.B	Placement bouton urgence	A/B	1 sem	A LANCER
T2.1.C	Appel one-tap vs numéro	A/B	1 sem	A LANCER
T2.2.B	Format PDF préféré	Qual	1 sem	EN COURS
T2.2.C	Performance génération PDF	Tech	3j	A LANCER
T3.1.A	Wireframe dashboard	Qual	1 sem	A LANCER
T3.1.B	Priorisation actions	A/B	2 sem	A LANCER
T3.3.A	Wizard onboarding auto	A/B	2 sem	EN COURS

3. OPPORTUNITÉ 1 : GÉRER SANTÉ PRÉVENTIVE

3.1. TEST 1.1.C: VISUALISATION CARNET DE SANTÉ

3.1.1. HYPOTHÈSE

La visualisation en timeline visuelle réduit le temps de recherche d'une information de 40% par rapport à une liste chronologique classique.

3.1.2. SETUP EXPÉRIMENTAL

Participants: 60 utilisateurs bêta (30 par groupe)

Groupes:

- Groupe A : Liste chronologique classique (contrôle)
- Groupe B : Timeline visuelle avec icônes et codes couleur

Tâche de test :

- 1. Retrouver le dernier vaccin antirabique
- 2. Vérifier si le vermifuge est à jour
- 3. Consulter le poids de l'animal il y a 6 mois

Métriques:

- Temps moyen de complétion de chaque tâche (primaire)
- Taux de réussite (secondaire)
- Score satisfaction UX 1-10 (secondaire)

3.1.3. CRITÈRES DE SUCCÈS

Validation: Groupe B réduit temps recherche >= 35% ET score satisfaction >= 8/10

Itération: Groupe B réduit temps 20-34% OU satisfaction 6-7/10

Abandon: Groupe B réduit temps < 20% OU satisfaction < 6/10

3.1.4. PROTOCOLE

Semaine 1:

- Recrutement 60 bêta-testeurs (critère : >= 3 documents uploadés)
- Assignation aléatoire aux groupes
- Test utilisateurs en remote (enregistrement écran + voice-over)

Semaine 2:

- Analyse quantitative (temps, taux réussite)
- Analyse qualitative (verbatims, points de friction)
- Décision Go/NoGo/Iterate

3.1.5. RISQUES ET MITIGATIONS

Risque 1 : Effet nouveauté fausse les résultats

Mitigation : Période acclimatation 48h avant mesure

Risque 2 : Taille échantillon insuffisanté

Mitigation : Power analysis préliminaire (60 participants = 80% power)

3.2. TEST 1.2.B: TIMING NOTIFICATION RAPPELS

3.2.1. HYPOTHÈSE

Les notifications envoyées 15 jours avant échéance optimisent le taux d'honneur des rappels (ni trop tôt = oubli, ni trop tard = stress).

3 2 2 SETUP EXPÉRIMENTAL

Participants: 300 utilisateurs actifs avec >= 1 rappel configuré

Groupes:

- Groupe A : Notification 7 jours avant (n=100)
- Groupe B: Notification 15 jours avant (n=100)
- Groupe C: Notification 21 jours avant (n=100)

Métriques:

- Taux honneur rappel (action effectuée dans 7j suivant échéance) primaire
- Taux ouverture notification secondaire
- Score anxiété auto-déclaré post-rappel secondaire

3.2.3. CRITÈRES DE SUCCÈS

Validation: Groupe gagnant \geq = 75% taux honneur ET significativement supérieur aux autres (p < 0.05)

Itération: Taux honneur 65-74% OU pas de différence significative

Abandon: Tous groupes < 65% taux honneur

3.2.4. PROTOCOLE

Semaines 1-3:

- Envoi notifications selon timing groupe
- Tracking automatique des actions (marquage «fait » dans l'app)
- Survey post-action (J+1 après échéance)

Semaine 4:

- Analyse statistique (chi-square test)
- Segmentation par type rappel (vaccin vs vermifuge vs autre)
- Recommandation timing optimal

3.2.5. RÉSULTATS INTERMÉDIAIRES (EN COURS)

Données partielles au 15/11/2025 (n=180 complétés):

- Groupe A (7j): 62% taux honneur
- Groupe B (15j): 78% taux honneur
- Groupe C (21j): 71% taux honneur

Tendance : Groupe B en tête mais pas encore significatif (p=0.08). Besoin 120 utilisateurs supplémentaires.

3.3. TEST 1.2.C: PERSONNALISATION RAPPELS

3.3.1. HYPOTHESE

Les rappels personnalisés par race et age augmentent le taux d'ouverture de 25% et le taux d'honneur de 15% vs rappels génériques.

3.3.2. SETUP EXPÉRIMENTAL

Participants: 200 utilisateurs actifs

Groupes:

- Groupe A : «Rappel : Vaccin antirabique de [Nom animal]» (generique)
- Groupe B : «Balto (Epagneul 4 ans) : Vaccin antirabique recommandé » (personnalisé)

Variables testées:

- Mention nom + race + age
- Ton personnalisé («recommandé» vs «a faire»)
- Icone spécificité race dans notification

Metriques:

- Taux ouverture notification (primaire)
- Taux honneur rappel (primaire)
- Score pertinence perçue 1-10 (secondaire)

3.3.3. CRITERES DE SUCCÈS

Validation: Groupe B >= +20% ouverture ET >= +10% honneur vs Groupe A

Iteration: Entre +10-19% ouverture OU +5-9% honneur

Abandon: < +10% ouverture ET < +5% honneur

3.3.4. PROTOCOLE

Semaines 1-2

- Test A/B classique avec assignation aléatoire
- Tracking automatique ouverture + honneur
- Survey satisfaction J+7

3.3.5. LEARNINGS ATTENDUS

- Quel niveau de personnalisation optimal (nom seul vs nom+race vs nom+race+age)
- Impact de l'icone race sur perception
- Segments utilisateurs les plus réceptifs

3.4. TEST 1.2.D: WIZARD CONFIGURATION RAPPELS

3.4.1. HYPOTHESE

Un wizard de configuration guide augmente le taux de completion de 40% et le nombre moyen de rappels configurés de 2x vs configuration manuelle.

3 4 2 SETUP EXPÉRIMENTAL

Participants: 100 nouveaux utilisateurs en onboarding

Groupes:

- Groupe A: Configuration manuelle (page vierge + bouton «Ajouter rappel»)
- Groupe B : Wizard guide en 4 étapes avec suggestions automatiques

Etapes wizard Groupe B:

- 1. Race et age de l'animal (ou «Ne sait pas»)
- 2. Suggestions automatiques de rappels selon race/age
- 3. Validation en bloc ou ajustement individuel
- 4. Configuration préférences notifications

Metriques:

- Taux completion configuration (primaire)
- Nombre moyen rappels configurés (primaire)
- Temps passé dans configuration (secondaire)
- Taux ajustement postérieur (secondaire)

3.4.3. CRITERES DE SUCCÈS

Validation: Groupe B >= +35% completion ET >= 1.8x rappels configurés vs A

Iteration: +20-34% completion OU 1.4-1.7x rappels

Abandon: < +20% completion ET < 1.4x rappels

3.4.4. PROTOCOLE

Semaines 1-2

- Integration wizard dans flux onboarding
- A/B test avec assignation aléatoire nouveaux inscrits
- Tracking automatique + heatmaps Hotjar
- Interviews qualitatives 10 utilisateurs Groupe B

3.4.5. KILL CRITERIA SPÉCIFIQUES

Abandon immédiat si :

- Taux abandon wizard > 50%
- Temps configuration wizard > 5 min (vs 2 min manuel)
- NPS wizard < 5/10

3.5. TEST 1.3.A: PILOTE CLINIQUE VÉTÉRINAIRE

3.5.1. HYPOTHESE

La synchronisation automatique avec vétérinaire augmente le taux d'adoption Peetic a >= 50% des patients de la clinique et améliore la retention a 85% J+30.

3 5 2 SETUP EXPÉRIMENTAL

Partenaire: Clinique Dr Lemoine (Lyon, 800 patients actifs)

Type: Beta test avec integration manuelle puis API

Phase 1 (Semaines 1-2): Integration manuelle

- Export CSV comptes-rendus consultation
- Import manuel dans Peetic
- Creation automatique rappels

Phase 2 (Semaines 3-4): API beta

- Connexion API Peetic VetoGestion
- Sync temps reel après chaque consultation
- Notification patient «Nouveau CR disponible»

Metriques:

- Taux adoption (% patients clinique avec compte Peetic actif) primaire
- Taux activation sync (% comptes avec >= 1 CR synchronisé) primaire
- Retention J+30 sync vs non-sync primaire
- Satisfaction vétérinaires (NPS) secondaire
- Nombre questions support utilisateurs secondaire

3.5.3. CRITERES DE SUCCÈS

Validation Phase 1: >= 40% adoption patients ET NPS veto >= 7/10

Validation Phase 2: >= 60% adoption ET retention sync >= 80% J+30

Scale decision: Valide Phase 2 + CAC via veto < 15 euros = deploy 3 cliniques supplémentaires Q1

3.5.4. PROTOCOLE

Semaine 1:

- Formation équipe Dr Lemoine (30 min)
- Affichage QR code salle attente + flyers
- Mention Peetic par secretaire a chaque prise RDV

Semaines 2-4:

- Tracking adoption hebdomadaire
- Interviews 10 patients adoptants
- Interviews 10 patients non-adoptants (comprendre barrières)
- Survey satisfaction Dr Lemoine et assistantes

Semaine 5:

- Analyse ROI (temps gagne vs temps integration)
- Apprentissages pour scale
- Go/NoGo extension autres cliniques

3.5.5. RESULTATS ACTUELS (EN COURS)

Données au 15/11/2025 (Semaine 3):

- 34 patients avec compte Peetic actif (68% taux adoption sur 50 contactés)
- 28 comptes avec >= 1 CR synchronisé (82% activation)
- Retention J+7: 94% (vs 68% baseline non-sync)
- NPS Dr Lemoine : 9/10 («game changer pour suivi preventif»)

Barrieres identifiées:

- Patients séniors difficulté création compte (besoin aide famille)
- Manque notification push lors nouvelle sync (implementation S4)

3.6. TEST 1.3.C: RETENTION SYNC VS NON-SYNC

3.6.1. HYPOTHESE

Les utilisateurs avec synchronisation vétérinaire active ont une retention J+30 de 85% (vs 68% baseline) et J+90 de 75% (vs 52% baseline).

3.6.2. SETUP EXPÉRIMENTAL

Type: Etude de cohorte

Cohortes:

Cohorte A : Utilisateurs avec sync vétérinaire active (n=100 cible)

Cohorte B: Utilisateurs sans sync (controle, n=200)

Criteres inclusion:

• Inscription entre Dec 2025 et Jan 2026

>= 1 document uploade

>= 1 rappel configure

Metriques:

Retention J+30 (connexion dans les 30 derniers jours) - primaire

• Retention J+90 - primaire

• Nombre sessions/mois - secondaire

• Taux conversion Premium - secondaire

3.6.3. CRITERES DE SUCCÈS

Validation: Cohorte A >= 80% retention J+30 ET >= +15 points vs Cohorte B

Iteration: 75-79% J+30 OU +10-14 points vs B

Abandon: < 75% J+30 OU < +10 points vs B

3.6.4. PROTOCOLE

Mois 1 (Dec 2025):

• Constitution cohortes

• Tracking automatique métriques

Mois 2 (Jan 2026):

Analyse J+30

• Segmentation par profil utilisateur

Mois 3-4 (Fev-Mars 2026):

Suivi J+90

Analyse survival curves

• Identification moments critiques churn

3.6.5. ANALYSES COMPLEMENTAIRES

- Correlation sync + autres features (rappels, urgence, premium)
- Impact qualité données sync sur retention
- Cout acquisition utilisateur via veto vs autres canaux

4. OPPORTUNITÉ 2 : URGENCE VÉTÉRINAIRE

4.1. TEST 2.1.B: PLACEMENT BOUTON URGENCE

4.1.1. HYPOTHESE

Un bouton urgence floating (omniprésent) augmente le taux de découverte de 3x vs placement dans menu.

4.1.2. SETUP EXPÉRIMENTAL

Participants: 150 utilisateurs actifs

Groupes:

• Groupe A : Bouton dans menu hamburger (controle)

• Groupe B: Bouton dans dashboard principal

• Groupe C: Floating action button rouge (toutes pages)

Metriques:

■ Taux découverte feature (% utilisateurs cliquant >= 1x) - primaire

• Temps découverte moyen - primaire

Taux utilisation en situation réelle (tracking via survey) - secondaire

4.1.3. CRITERES DE SUCCÈS

Validation: Groupe gagnant >= 70% découverte en 7j ET >= 2x vs controle

Iteration: 50-69% découverte OU 1.5-1.9x vs controle

Abandon: < 50% découverte ET < 1.5x vs controle

4.1.4. PROTOCOLE

Semaine 1:

- A/B/C test avec assignation aléatoire
- Tracking clics + heatmaps
- Pas de communication proactive sur feature (test organique)

Semaine 2:

- Analyse découverte par groupe
- Survey utilisateurs Groupe C : «Avez-vous remarqué le bouton urgence ?»
- Decision placement optimal

4.1.5. CONSIDERATIONS DESIGN

Groupe C floating button:

• Position: Bas droite

• Couleur : Rouge Winston (#F65e5e)

• Icone: Croix médicale + «SOS»

• Comportement : Visible toutes pages sauf onboarding

4.2. TEST 2.1.C: APPEL DIRECT ONE-TAP

4.2.1. HYPOTHESE

Un bouton d'appel direct augmente le taux de conversion «voir numero vétérinaire» vers «appeler» de 60% vs affichage numero seul.

4.2.2. SETUP EXPÉRIMENTAL

Participants: 100 utilisateurs ayant clique bouton urgence

Groupes:

- Groupe A : Numero telephone affiche (besoin copier-coller ou mémoriser)
- Groupe B : Bouton «Appeler [Nom vétérinaire]» (déclénchement appel direct)

Metriques:

- Taux conversion clic urgence vers appel effectué (primaire)
- Temps entre clic urgence et debut appel (secondaire)
- Satisfaction utilisateur post-urgence (secondaire)

4.2.3. CRITERES DE SUCCÈS

Validation: Groupe B >= +50% conversion ET temps réduit >= 40% vs A

Iteration: +30-49% conversion OU temps réduit 20-39%

Abandon: < +30% conversion ET < 20% temps réduit

4.2.4. PROTOCOLE

Semaine 1:

- A/B test avec tracking appels (iOS CallKit / Android TelecomManager)
- Survey automatique J+1 après utilisation urgence

Considerations techniques:

- Permissions requises : Acces telephonie
- Fallback Android ancien (< v6): Copy numero + toast «Collez dans app telephone»

4.3. TEST 2.2.B: FORMAT PDF PRÉFÈRE

4.3.1. HYPOTHESE

Les vétérinaires préfèrent un format PDF chronologique inverse (plus récent en haut) avec sections bien délimitées.

4 3 2 SETUP EXPÉRIMENTAL

Participants: 5 vétérinaires partenaires

Type: Test qualitatif avec 3 formats

Formats testes:

• Format A : Chronologique classique (ancien vers récent)

- Format B : Chronologique inverse (récent vers ancien)
- Format C : Par categories (Vaccins / Vermifuges / Consultations / Autres)

Metriques:

- Preference déclarée (classement 1-2-3) primaire
- Temps localisation info clé («Dernier vaccin antirabique?») primaire
- Score lisibilité 1-10 secondaire

4 3 3 CRITERES DE SUCCÈS

Validation: Format gagnant préfère par >= 4/5 vétérinaires ET temps localisation < 15 sec

Iteration: Format préfère 3/5 0U temps 15-30 sec

Abandon: Aucun format préfère majoritairement ET temps > 30 sec

4.3.4. PROTOCOLE

Semaine 1:

- Preparation 3 PDFs fictifs (même données, formats différents)
- Sessions 30 min individuelles avec chaque vétérinaire
- Tache: «Trouvez rapidement ces 5 infos dans chaque format»
- Interview semi-structurée préfèrence

Learnings attendus:

- Structure optimale PDF
- Niveau détail vs synthèse
- Utilite QR code vérification
- Informations manquantes actuellement

4.3.5. RESULTATS ACTUELS (EN COURS)

Données partielles 3/5 vétérinaires :

- Format B (chronologique inverse): 3 votes préfèrence
- Temps localisation moyen: Format B = 12 sec, Format A = 24 sec, Format C = 18 sec
- Feedbacks: «Format B plus intuitif, cherche toujours info récente en priorité»

Ameliorations suggérées:

Ajouter photo animal en header

- Highlight allergies en rouge
 Tableau synthèse vaccins (nom + dernière date + prochaine échéance)

4.4. TEST 2.2.C: PERFORMANCE GÉNÉRATION PDF

4.4.1. HYPOTHESE

La génération PDF avec optimisations backend peut atteindre < 5 sec au p95 même avec 50+ documents.

4.4.2. SETUP EXPÉRIMENTAL

Type: Test technique load testing

Scenarios:

- Scenario 1 : 5 documents (p50 utilisateurs)
- Scenario 2:15 documents (p75)
- Scenario 3:50 documents (p95)
- Scenario 4: 100 documents (p99)

Metriques:

- Temps génération PDF p50, p95, p99 (primaire)
- Taux erreur génération (primaire)
- Consommation mémoire serveur (secondaire)

4.4.3. CRITERES DE SUCCÈS

Validation: p95 < 5 sec ET p99 < 8 sec ET taux erreur < 1%

Iteration: p95 5-7 sec 0U p99 8-12 sec

Abandon: p95 > 7 sec OU p99 > 12 sec

4.4.4. PROTOCOLE

Phase 1 (Jour 1):

- Implementation cache Redis pour templates
- Optimisation requêtes DB (eager loading)
- Parallelisation traitement images

Phase 2 (Jour 2):

- Load testing avec Apache JMeter
- 100 générations concurrentes par scenario
- Monitoring APM (NewRelic)

Phase 3 (Jour 3):

- Analyse bottlenecks
- Optimisations ciblées
- Nouveau test validation

4.4.5. OPTIMISATIONS CANDIDATES

- Lazy loading images (charge uniquement si nécessaire)
- Pre-compilation template PDF au lieu compilation runtime
- CDN pour assets statiques PDF (logo, icônes)
- Queue asynchrone si génération > 3 sec

5. OPPORTUNITÉ 3: RÉDUIRE CHARGE MENTALE

5.1. TEST 3.1.A: WIREFRAME DASHBOARD ACTIONS

5.1.1. HYPOTHESE

Un dashboard structuré «Urgent / Cette semaine / Ce mois» est compris immédiatement (< 10 sec) par >= 80% utilisateurs.

5.1.2. SETUP EXPÉRIMENTAL

Participants: 20 utilisateurs (10 actuels + 10 nouveaux)

Type: Test qualitatif wireframe

Wireframes testes:

Version A : Structure temporelle (Urgent / Semaine / Mois)

Version B : Structure catégorielle (Sante / Rendez-vous / Documents)

Version C : Structure mixte (Urgent en haut + Categoriel en bas)

Tache:

- «Ou verriez-vous un rappel de vaccin prévu dans 5 jours?»
- «Ou verriez-vous un rendez-vous vétérinaire aujourd'hui?»
- «Quelle action feriez-vous en premier?»

Metriques:

- Temps compréhension structuré (primaire)
- Taux réponse correcte localisation info (primaire)
- Preference déclarée (secondaire)

5.1.3. CRITERES DE SUCCÈS

Validation: Version gagnante >= 80% compréhension < 10 sec ET >= 85% localisation correcte

Iteration: 70-79% compréhension OU 70-84% localisation

Abandon: < 70% compréhension ET < 70% localisation

5.1.4. PROTOCOLE

Semaine 1:

- Sessions 30 min remote (Zoom + Figma)
- Think-aloud protocol
- 3 wireframes présentés ordre aléatoire
- Interview post-test préférences

5.1.5. LEARNINGS ATTENDUS

- Structure mentale utilisateurs pour organiser tâches
- Vocabulaire optimal («Urgent » vs «Aujourd'hui » vs «A faire »)
- Densite information optimale par section
- Besoin filtres ou tout visible

5.2. TEST 3.1.B: PRIORISATION ACTIONS DASHBOARD

5.2.1. HYPOTHESE

Une priorisation automatique «smart» réduit le score anxiété de 30% vs affichage chronologique simple.

5.2.2. SETUP EXPÉRIMENTAL

Participants: 120 utilisateurs actifs avec >= 3 actions en cours

Groupes:

- Groupe A : Ordre chronologique simple (controle)
- Groupe B: Priorisation par importance (vaccins > vermifuges > autres)
- Groupe C: Priorisation smart (ML basique: urgence + importance + historique utilisateur)

Metriques:

- Score anxiété auto-déclaré 1-10 avant/après 2 semaines (primaire)
- Taux completion actions suggérées (secondaire)
- Temps passé sur dashboard (secondaire)

5.2.3. CRITERES DE SUCCÈS

Validation: Groupe gagnant reduction anxiété >= 25% ET significativement supérieur (p < 0.05)

Iteration: Reduction 15-24% OU tendance positive non significative

Abandon: Reduction < 15% ET pas difference vs controle

5.2.4. PROTOCOLE

Jour 0:

- Survey baseline anxiété: «Sur échelle 1-10, quel est votre niveau anxiété concernant santé animal?»
- Assignation aléatoire aux groupes

Semaines 1-2

- Utilisation normale app avec priorisation selon groupe
- Tracking completion actions

Jour 14:

- Survey post-test anxiété (même question)
- Calcul delta anxiété par utilisateur
- Analyse statistique (ANOVA)

5.2.5. ALGORITHME PRIORISATION GROUPE C

Facteurs scores:

- Urgence temporelle (poids 40%): échéance < 3j = urgent
- Importance type (poids 30%): vaccin > vermifuge > toilettage
- Historique honneur (poids 20%): utilisateur honore rappels = moins urgent
- Preferences utilisateur (poids 10%): actions ignorées = baisse priorité

5.3. TEST 3.3.A: WIZARD ONBOARDING AUTO

5.3.1. HYPOTHESE

Un wizard de configuration automatique augmente le taux de completion de 92% (vs 54% configmanuelle) et réduit anxiété immédiate de 2 points.

5.3.2. SETUP EXPÉRIMENTAL

Participants: 100 nouveaux utilisateurs

Groupes:

- Groupe A : Configuration manuelle (controle)
- Groupe B: Wizard avec suggestions automatiques («pilote auto»)

Etapes wizard Groupe B:

- 1. «Parlez-nous de [Nom animal]» (race, age, mode vie)
- 2. «Voici les rappels que nous recommandons» (liste pré-cochée)
- 3. «Validez ou ajustez» (possibilité modifier)
- 4. «C'est pret!» (récapitulatif + badge «Protege»)

Metriques:

- Taux completion configuration (primaire)
- Nombre moyen rappels configurés (primaire)
- Score anxiété immédiat après config (primaire)
- Taux ajustement suggestions (secondaire)

5.3.3. CRITERES DE SUCCÈS

Validation: Groupe B >= 90% completion ET >= 4 rappels moyenne ET anxiété −2 points vs A

Iteration: 80-89% completion OU 3-3.9 rappels OU anxiété -1 point

Abandon: < 80% completion ET < 3 rappels ET pas reduction anxiété

5.3.4. PROTOCOLE

Semaines 1-2

- A/B test sur nouveaux inscrits
- Tracking completion + temps passé
- Survey post-config: «Score anxiété 1-10» + «Score satisfaction wizard 1-10»

5.3.5. RESULTATS ACTUELS (EN COURS)

Données partielles au 15/11/2025 (n=62):

- Groupe A: 54% completion, 2.1 rappels moyenne, anxiété 6.8/10
- Groupe B: 92% completion, 4.3 rappels moyenne, anxiété 4.9/10

Delta anxiété Groupe B: -1.9 points (proche objectif -2)

Insights qualitatifs Groupe B:

- «Rassurant de voir que l'app sait ce dont j'ai besoin»
- «J'aurais oublie le traitement antiparasitaire»
- «Gagner 10 min vs tout configurer manuellement»

Taux ajustement suggestions : 28% modifient >= 1 rappel (acceptable)

6. CALENDRIER EXPÉRIMENTAL Q1 2026

6.1. JANVIER 2026

Semaine	Tests lancés	Tests complétés
S1	T1.2.B (suite EN COURS)T3.3.A (suite EN COURS)	
S2	T1.3.A (suite EN COURS)T2.2.B (suite EN COURS)	• T3.3.A (résultats)
S3	T1.1.C (lancement)T2.1.B (lancement)	T1.2.B (résultats)T2.2.B (résultats)
S4	T1.2.C (lancement)T3.1.A (lancement)	T1.1.C (résultats)T2.1.B (résultats)

6.2. FEVRIER 2026

Semaine	Tests lancés	Tests complétés
S1	T1.2.D (lancement)T2.1.C (lancement)	T1.2.C (résultats) T3.1.A (résultats)
S2	T3.1.B (lancement)T2.2.C (lancement)	• T1.2.D (résultats)
S3	• T1.3.C (lancement)	T2.1.C (résultats) T2.2.C (résultats)
S4	Review mid-Q1Ajustements roadmap	

6.3. MARS 2026

Semaine	Tests lancés	Tests complétés
S1-S2	Tests secondaires selon learningsValidations techniques solutions	• Compilation learnings Q1
S3	Preparation tests Q2	Decisions Go/NoGo features
Review complète Q1 Présentation stakeholders		• T1.3.C (résultats J+30)

7. GESTION DES APPRENTISSAGES

7.1. TEMPLATE DOCUMENTATION TEST

Pour chaque test complète, documenter :

1. Hypothese testée

[Enonce clair hypothèse]

2. Setup expérimental

[Participants, groupes, métriques]

3. Resultats quantitatifs

[Données chiffrées + significativité statistique]

4. Resultats qualitatifs

[Verbatims utilisateurs, observations, insights]

5. Decision

[VALIDE / INVALIDE / ITERATE + justification]

6. Apprentissages clés

[3-5 learnings actionnables]

7. Recommendations next steps

[Actions concrètes selon decision]

7.2. PARTAGE DES LEARNINGS

Hebdomadaire:

- Update fichier OST (marguer tests VALIDES/INVALIDES)
- Slack channel tests-apprentissages
- Standups équipe produit

Mensuel:

- Présentation all-hands avec highlights
- Documentation Notion centrale
- Update stakeholders externes (investisseurs si applicable)

Trimestriel:

- Retrospective expérimentations Q1
- Rapport learnings complet
- Ajustement stratégie Q2

8. PRINCIPES D'EXPÉRIMENTATION

8.1. VELOCITY VS LEARNING

Privilegier qualité apprentissage sur quantité tests :

- Mieux 5 tests bien conçus avec insights clairs
- Que 20 tests baclés sans apprentissages exploitables

Cadence cible:

- 3-4 tests lancés par semaine
- 2-3 tests complétés par semaine

8.2. RIGUEUR SCIENTIFIQUE

Avant chaque test:

- Hypothese claire et falsifiable
- Metriques définies a priori
- Criteres succès/échec explicites
- Taille échantillon calculée (power analysis)

Pendant test:

- Pas de modification setup en cours
- Tracking automatique prioritaire sur déclaratif
- Monitoring anomalies (bug, biais échantillon)

Apres test:

- Analyse statistique rigoureuse (significativité)
- Separation correlation et causalité
- Documentation complète même si échec

8.3. KILL CRITERIA SYSTÉMATIQUES

Chaque test définit critères abandon AVANT lancement :

- Metrique primaire < seuil minimum
- Cout implementation > budget
- NPS feature < 5/10 (rejet utilisateurs)
- Impact négatif autres métriques clés
- Delai réalisation > 2x estimé

Si kill criteria atteint: STOP immédiat, documenter, pivoter.

8.4. COLLABORATION CROSS-FONCTIONNELLE

Product: Hypothèses, métriques, decisions Go/NoGo

Design: Wireframes, prototypes, tests utilisateurs

Engineering: Faisabilite, implementation rapide, instrumentation

Data: Analytics, significativité statistique, dashboards

Marketing: Messaging, acquisition participants tests

Rituels:

- Planning tests hebdomadaire (Lundi)
- Review résultats hebdomadaire (Vendredi)
- Retrospective tests mensuelle

9. METRIQUES DE SUCCÈS PLAN DE TESTS

9.1. NIVEAU TESTS INDIVIDUELS

Objectif Q1 2026:

- 15 tests lancés (100% objectif)
- 12 tests complétés (80% objectif)
- >= 8 tests VALIDES (67% taux validation)

Qualite apprentissages:

- 100% tests avec documentation complète
- >= 3 learnings actionnables par test
- Temps moyen decision Go/NoGo < 48h après résultats

9.2. NIVEAU OPPORTUNITES

Opportunité 1 (Gérer santé):

- >= 4/6 tests valides
- >= 1 solution déployée production Q1
- Contribution >= 60% North Star Metric

Opportunité 2 (Urgence veto):

- >= 3/5 tests valides
- Feature urgence en beta publique
- NPS feature >= 9/10

Opportunité 3 (Charge mentale):

- >= 2/4 tests valides
- Reduction anxiété moyenne >= 20%
- Taux adoption dashboard >= 70%

9.3. NIVEAU NORTH STAR METRIC

Contribution plan tests:

- Features validées contribuent cumulativement a 2 500 rappels honores/semaine Q1
- Chaque solution validée impacte >= 10% métrique
- Pas de régression autres métriques clés (retention, NPS)

10. RISQUES ET MITIGATIONS

10.1. RISQUES EXPERIMENTAUX

Risque 1 : Taille échantillon insuffisanté

- Impact: Resultats non significatifs statistiquement
- Mitigation : Power analysis avant chaque test + recrutement anticipé
- Contingence : Extension duree test ou elargissement critères inclusion

Risque 2: Effet Hawthorne (comportement modifie par observation)

- Impact : Resultats tests ne reflètent pas usage reel
- Mitigation: Tests A/B aveugles + période acclimatation + tracking passif
- Contingence : Validation avec cohorte non-informée

Risque 3: Biais selection participants

- Impact : Resultats non généralisables
- Mitigation : Assignation aléatoire + diversité personas
- Contingence: Segmentation analyses par profil utilisateur

10.2. RISQUES OPERATIONNELS

Risque 4: Retards implementation technique

- Impact : Decalage calendrier tests
- Mitigation: Buffer 20% roadmap + priorisation MVP features
- Contingence : Tests papier/prototype avant implementation complète

Risque 5 : Surcharge équipe

- Impact : Baisse qualité tests ou burnout
- Mitigation: Max 4 tests paralleles + rotation roles
- Contingence : Report tests P2 au Q2

10.3. RISQUES BUSINESS

Risque 6: Tests négatifs consécutifs = perte confiance stakeholders

- Impact : Remise en cause stratégie produit
- Mitigation: Communication proactive valeur apprentissages échecs
- Contingence : Quick wins avec tests a faible risque

Risque 7 : Feature validée mais chère a scaler

- Impact : Impassé entre validation et contraintes techniques/budget
- Mitigation : Estimation coûts scale avant validation finale
- Contingence : Version dégradée ou pivot implementation

11. CONCLUSION

11.1. SYNTHESE DU PLAN

Ce plan de tests Q1 2026 structuré l'expérimentation autour de 13 tests prioritaires couvrant les 3 opportunites principales du framework Thoughtful Execution Peetic.

Principes directeurs:

- Rigueur scientifique avec hypothèses falsifiables
- Apprentissages systématiques même en cas échec
- Collaboration cross-fonctionnelle
- Alignement permanent avec North Star Metric

11.2. PROCHAINES ÉTAPES IMMÉDIATES

Semaine du 18 Novembre 2025 :

- Finalisation protocoles tests T1.1.C et T2.1.B
- Recrutement participants (objectif 60 + 150)
- Preparation instrumentation tracking

Semaine du 25 Novembre 2025 :

- Lancement T1.1.C
- Analyse résultats finaux T1.2.B (EN COURS)
- Decision Go/NoGo timing notification 15j

Decembre 2025:

- Acceleration cadence tests (objectif 6 complétés)
- Premier bilan learnings
- Ajustements roadmap Q1 selon premiers résultats

11.3. ENGAGEMENT ÉQUIPE

L'expérimentation n'est pas un frein a la vélocité, c'est un accélérateur de certitude.

Chaque test réduit le risque, augmente les chances de succès produit, et renforce la culture data-driven de l'équipe Peetic.

12. ANNEXES

12.1. ANNEXE A: TEMPLATE FICHE TEST

FICHE TEST [ID]

Opportunité : [Opp X] Hypothese : [Enonce]

Type : [A/B / Qualitatif / Technique / Cohorte]

Duree : [X semaines]
Participants : [n=X]

SETUP

Groupes : [Description]Metriques : [Liste]

- Criteres succès : [VALIDE si...]

PLANNING

- S1 : [Actions] - S2 : [Actions]

RESULTATS

[A complèter post-test]

DECISION

[VALIDE / INVALIDE / ITERATE]

LEARNINGS

- 1. [Learning 1]
- 2. [Learning 2]
- [Learning 3]

NEXT STEPS

[Actions concrètes]

12.2. ANNEXE B: CHECKLIST LANCEMENT TEST

Avant lancement:

- [] Hypothese validée par PM + Design + Eng
- [] Metriques instrumentées et testées
- [] Participants recrutés et segmentés
- [] Brief équipe support (anticipér questions users)
- [] Plan B si bug ou anomalie
- [] Documentation test créée (Notion)
- [] Slack channel test créé
- [] Go final PO

12.3. ANNEXE C: CHECKLIST CLOTURE TEST

Après test complet:

- [] Données exportées et sauvegardées
- [] Analyse statistique terminée
- [] Insights qualitatifs documentés
- [] Decision Go/NoGo prise et argumentée
- [] Fiche test complétée
- [] Présentation équipe réalisée
- [] Update OST (statut solutions)

- [] Communication stakeholders
- [] Archivage prototype/code test

13. RÉFÉRENCES

Méthodologie expérimentation :

- Stefan Thomke, «Experimentation Works» (2020)
- Ronny Kohavi, «Trustworthy Online Controlled Experiments» (2020)
- Dan Siroker, «A/B Testing: The Most Powerful Way to Turn Clicks Into Customers» (2013)

Application au cas Peetic:

- Document Thoughtful Execution Framework Peetic
- Document OST-JTBD Peetic
- Document JTBD Peetic
- OKRs et Product Bets Peetic

Outils recommandés :

- A/B testing: Optimizely, LaunchDarkly, Firebase Remote Config
- Analytics : Mixpanel, Amplitude
- Qual testing: Hotjar, FullStory, Maze
- Stat analysis: R, Python (scipy.stats)

Licence: CC BY-SA 4.0

